How to pass run time values to tools
This guide assumes familiarity with the following concepts:
If you're using LangGraph, please refer to this how-to guide which shows how to create an agent that keeps track of a given user's favorite pets.
langchain-core==0.2.21
Must have langchain-core>=0.2.21
to use this functionality.
You may need to bind values to a tool that are only known at runtime. For example, the tool logic may require using the ID of the user who made the request.
Most of the time, such values should not be controlled by the LLM. In fact, allowing the LLM to control the user ID may lead to a security risk.
Instead, the LLM should only control the parameters of the tool that are meant to be controlled by the LLM, while other parameters (such as user ID) should be fixed by the application logic.
This how-to guide shows you how to prevent the model from generating certain tool arguments and injecting them in directly at runtime.
We can bind them to chat models as follows:
- OpenAI
- Anthropic
- Azure
- Cohere
- FireworksAI
- Groq
- MistralAI
- TogetherAI
pip install -qU langchain-openai
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
pip install -qU langchain-anthropic
import getpass
import os
os.environ["ANTHROPIC_API_KEY"] = getpass.getpass()
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
pip install -qU langchain-openai
import getpass
import os
os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import AzureChatOpenAI
llm = AzureChatOpenAI(
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
)
pip install -qU langchain-google-vertexai
import getpass
import os
os.environ["GOOGLE_API_KEY"] = getpass.getpass()
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model="gemini-1.5-flash")
pip install -qU langchain-cohere
import getpass
import os
os.environ["COHERE_API_KEY"] = getpass.getpass()
from langchain_cohere import ChatCohere
llm = ChatCohere(model="command-r-plus")
pip install -qU langchain-fireworks
import getpass
import os
os.environ["FIREWORKS_API_KEY"] = getpass.getpass()
from langchain_fireworks import ChatFireworks
llm = ChatFireworks(model="accounts/fireworks/models/firefunction-v1", temperature=0)
pip install -qU langchain-groq
import getpass
import os
os.environ["GROQ_API_KEY"] = getpass.getpass()
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama3-8b-8192")
pip install -qU langchain-mistralai
import getpass
import os
os.environ["MISTRAL_API_KEY"] = getpass.getpass()
from langchain_mistralai import ChatMistralAI
llm = ChatMistralAI(model="mistral-large-latest")
pip install -qU langchain-openai
import getpass
import os
os.environ["TOGETHER_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key=os.environ["TOGETHER_API_KEY"],
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
)
Hiding arguments from the modelβ
We can use the InjectedToolArg annotation to mark certain parameters of our Tool, like user_id
as being injected at runtime, meaning they shouldn't be generated by the model
from typing import List
from langchain_core.tools import InjectedToolArg, tool
from typing_extensions import Annotated
user_to_pets = {}
@tool(parse_docstring=True)
def update_favorite_pets(
pets: List[str], user_id: Annotated[str, InjectedToolArg]
) -> None:
"""Add the list of favorite pets.
Args:
pets: List of favorite pets to set.
user_id: User's ID.
"""
user_to_pets[user_id] = pets
@tool(parse_docstring=True)
def delete_favorite_pets(user_id: Annotated[str, InjectedToolArg]) -> None:
"""Delete the list of favorite pets.
Args:
user_id: User's ID.
"""
if user_id in user_to_pets:
del user_to_pets[user_id]
@tool(parse_docstring=True)
def list_favorite_pets(user_id: Annotated[str, InjectedToolArg]) -> None:
"""List favorite pets if any.
Args:
user_id: User's ID.
"""
return user_to_pets.get(user_id, [])
If we look at the input schemas for these tools, we'll see that user_id is still listed:
update_favorite_pets.get_input_schema().schema()
{'title': 'update_favorite_petsSchema',
'description': 'Add the list of favorite pets.',
'type': 'object',
'properties': {'pets': {'title': 'Pets',
'description': 'List of favorite pets to set.',
'type': 'array',
'items': {'type': 'string'}},
'user_id': {'title': 'User Id',
'description': "User's ID.",
'type': 'string'}},
'required': ['pets', 'user_id']}
But if we look at the tool call schema, which is what is passed to the model for tool-calling, user_id has been removed:
update_favorite_pets.tool_call_schema.schema()
{'title': 'update_favorite_pets',
'description': 'Add the list of favorite pets.',
'type': 'object',
'properties': {'pets': {'title': 'Pets',
'description': 'List of favorite pets to set.',
'type': 'array',
'items': {'type': 'string'}}},
'required': ['pets']}
So when we invoke our tool, we need to pass in user_id:
user_id = "123"
update_favorite_pets.invoke({"pets": ["lizard", "dog"], "user_id": user_id})
print(user_to_pets)
print(list_favorite_pets.invoke({"user_id": user_id}))
{'123': ['lizard', 'dog']}
['lizard', 'dog']
But when the model calls the tool, no user_id argument will be generated:
tools = [
update_favorite_pets,
delete_favorite_pets,
list_favorite_pets,
]
llm_with_tools = llm.bind_tools(tools)
ai_msg = llm_with_tools.invoke("my favorite animals are cats and parrots")
ai_msg.tool_calls
[{'name': 'update_favorite_pets',
'args': {'pets': ['cats', 'parrots']},
'id': 'call_W3cn4lZmJlyk8PCrKN4PRwqB',
'type': 'tool_call'}]
Injecting arguments at runtimeβ
If we want to actually execute our tools using the model-generated tool call, we'll need to inject the user_id ourselves:
from copy import deepcopy
from langchain_core.runnables import chain
@chain
def inject_user_id(ai_msg):
tool_calls = []
for tool_call in ai_msg.tool_calls:
tool_call_copy = deepcopy(tool_call)
tool_call_copy["args"]["user_id"] = user_id
tool_calls.append(tool_call_copy)
return tool_calls
inject_user_id.invoke(ai_msg)
[{'name': 'update_favorite_pets',
'args': {'pets': ['cats', 'parrots'], 'user_id': '123'},
'id': 'call_W3cn4lZmJlyk8PCrKN4PRwqB',
'type': 'tool_call'}]
And now we can chain together our model, injection code, and the actual tools to create a tool-executing chain:
tool_map = {tool.name: tool for tool in tools}
@chain
def tool_router(tool_call):
return tool_map[tool_call["name"]]
chain = llm_with_tools | inject_user_id | tool_router.map()
chain.invoke("my favorite animals are cats and parrots")
[ToolMessage(content='null', name='update_favorite_pets', tool_call_id='call_HUyF6AihqANzEYxQnTUKxkXj')]
Looking at the user_to_pets dict, we can see that it's been updated to include cats and parrots:
user_to_pets
{'123': ['cats', 'parrots']}
Other ways of annotating argsβ
Here are a few other ways of annotating our tool args:
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.tools import BaseTool
class UpdateFavoritePetsSchema(BaseModel):
"""Update list of favorite pets"""
pets: List[str] = Field(..., description="List of favorite pets to set.")
user_id: Annotated[str, InjectedToolArg] = Field(..., description="User's ID.")
@tool(args_schema=UpdateFavoritePetsSchema)
def update_favorite_pets(pets, user_id):
user_to_pets[user_id] = pets
update_favorite_pets.get_input_schema().schema()
{'title': 'UpdateFavoritePetsSchema',
'description': 'Update list of favorite pets',
'type': 'object',
'properties': {'pets': {'title': 'Pets',
'description': 'List of favorite pets to set.',
'type': 'array',
'items': {'type': 'string'}},
'user_id': {'title': 'User Id',
'description': "User's ID.",
'type': 'string'}},
'required': ['pets', 'user_id']}
update_favorite_pets.tool_call_schema.schema()
{'title': 'update_favorite_pets',
'description': 'Update list of favorite pets',
'type': 'object',
'properties': {'pets': {'title': 'Pets',
'description': 'List of favorite pets to set.',
'type': 'array',
'items': {'type': 'string'}}},
'required': ['pets']}
from typing import Optional, Type
class UpdateFavoritePets(BaseTool):
name: str = "update_favorite_pets"
description: str = "Update list of favorite pets"
args_schema: Optional[Type[BaseModel]] = UpdateFavoritePetsSchema
def _run(self, pets, user_id):
user_to_pets[user_id] = pets
UpdateFavoritePets().get_input_schema().schema()
{'title': 'UpdateFavoritePetsSchema',
'description': 'Update list of favorite pets',
'type': 'object',
'properties': {'pets': {'title': 'Pets',
'description': 'List of favorite pets to set.',
'type': 'array',
'items': {'type': 'string'}},
'user_id': {'title': 'User Id',
'description': "User's ID.",
'type': 'string'}},
'required': ['pets', 'user_id']}
UpdateFavoritePets().tool_call_schema.schema()
{'title': 'update_favorite_pets',
'description': 'Update list of favorite pets',
'type': 'object',
'properties': {'pets': {'title': 'Pets',
'description': 'List of favorite pets to set.',
'type': 'array',
'items': {'type': 'string'}}},
'required': ['pets']}
class UpdateFavoritePets2(BaseTool):
name: str = "update_favorite_pets"
description: str = "Update list of favorite pets"
def _run(self, pets: List[str], user_id: Annotated[str, InjectedToolArg]) -> None:
user_to_pets[user_id] = pets
UpdateFavoritePets2().get_input_schema().schema()
{'title': 'update_favorite_petsSchema',
'description': 'Use the tool.\n\nAdd run_manager: Optional[CallbackManagerForToolRun] = None\nto child implementations to enable tracing.',
'type': 'object',
'properties': {'pets': {'title': 'Pets',
'type': 'array',
'items': {'type': 'string'}},
'user_id': {'title': 'User Id', 'type': 'string'}},
'required': ['pets', 'user_id']}
UpdateFavoritePets2().tool_call_schema.schema()
{'title': 'update_favorite_pets',
'description': 'Update list of favorite pets',
'type': 'object',
'properties': {'pets': {'title': 'Pets',
'type': 'array',
'items': {'type': 'string'}}},
'required': ['pets']}